Reduced Bacterial Hand Contamination with an Ergonomic Wheelchair

Billie Savvas Slater¹, Stephen B. Porter¹, Aaron S. DeVries¹, James R. Johnson¹,², Connie R. Clabots¹, Andrew H. Hansen¹,² and Gary D. Goldish
¹Minneapolis VA Health Care System, ²University of Minnesota

With a standard wheelchair (SW) (figure 1), the location of hand rims and tires potentially exposes the user's hands to the tires (figure 2), which continuously contact the floor. Such exposure risks contaminating the user's hands with floor-source bacteria, possibly increasing infection risk and disseminating resistant bacteria. For improved mechanics, our novel ergonomic wheelchair (EW) (figure 3) spatially separates the drive wheel and hand rims connecting them with a chain. The EW user's hands are distant from the floor contacting tires (figure 4).

The objective of this study was to determine whether our innovative Ergonomic Wheelchair reduces bacterial contamination of the user's hands.

Experimental Design
n=11 non-wheelchair using volunteers randomly assigned to test each wheelchair (SW, EW)

Activity-
Propelling through standardized course through the Minneapolis VA Medical Center

Sample Collection-
Blinded sample collection from:
• wheelchair tires
• push rims
• gloved hands of volunteers

Pre-ride bacterial counts of both wheelchairs from cleaned hand rims, and from riders' hands, were nil. Wheelchair tires exhibited comparably high bacterial counts regardless of chair type.

Post-ride bacterial counts from riders’ hands were substantial, and were consistently lower with the Ergonomic Wheelchair than the Standard Wheelchair.

Results-
Post-ride hand counts were substantial, and were consistently lower with the EW than the SW.
For riders who tested both chairs (n=8), hand counts were significantly lower (T-test paired two-tailed p=0.02) for riders using the EW (mean=3.1 SE=1.8) versus the SW (mean=56.9 SE=17.8).
For runs in which the two chairs were ridden in tandem by different users (n = 9), the between-chair hand count difference was highly significant (T-test paired two-tailed p=0.008, EW mean=4.2 SE=2.0, SW mean=54.8 SE=17.8), depicted in bar graph above.
In an unpaired comparison between all 9 EW runs and all 10 SW runs, the hand count difference was also significant (Unpaired two-tailed p=0.01).

Conclusion-
Separation of a wheelchair's hand rims and tires significantly reduces bacterial contamination of the user's hands.

The views expressed are those of the authors and do not reflect the official policy of the Department of Veterans Affairs. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited.